
Notes on 1657+1658

Daniel Maslowski

November 25, 2013

Contents
1 Introduction 3

2 Formal languages 4
2.1 Basic terms . 4
2.2 The Chomsky Hierarchy . 5
2.3 Pumping lemma . 6

3 Automata 7

4 Computability 8
4.1 Numberings, notations, and representations 8
4.2 Recursive and recursively enumerable 10
4.3 Hierarchies and separation . 12

1

Abstract

The following document mainly reduces the content of the courses
1657 and 1658 ("Grundlagen der Theoretischen Informatik A/B") of
the FernUniversität in Hagen to the definitions, theorems and proofs
provided by the authors. They may somewhat differ from common
definitions found in textbooks. However, when I felt that a definition,
theorem or proof did not satisfy me for some reason, I might as well
have chosen to modify them, sometimes slightly, sometimes completely,
to gain consistency. See this as a general quick reference for anyone.
Hence I neither guarantee correctness nor completeness.

2

1 Introduction
Theoretical Computer Science consists of several larger topics, three of which
are mainly formal languages, automata, and computability.

Although the course starts with some automata, I decided to collect the
definitions of all the automata mentioned (and some more) in one section.
Thus the order of this summary differs from the original order of the course
material where automata are defined just where needed. I don’t like this
hide-and-seek approach though. In addition, I will start introducing formal
languages first, like many textbooks do.

3

2 Formal languages

2.1 Basic terms

Definition 1 (Formal language)
A formal language L is a set of strings (words) on some alphabet Σ, i.e.
L ⊆ Σ∗.

Definition 2 (Alphabet)
An alphabet Σ = {a, b, c, ...} is a set of symbols.
Its cardinality (number of elements) is usually denoted as |Σ|.

Definition 3 (String)
A string (word) x is an ordered list of symbols, often denoted in bold face.
The length of a string is usually denoted as |x|.
The empty string ε is the only string of length 0.
For an alphabet Σ, Σi is the set of all strings of length i on Σ.

Definition 4 (Kleene closure)
The Kleene closure Σ∗ =

⋃
i∈N Σi, provided by the star operator ∗, is the set

of all strings of any length on an alphabet Σ, including the empty string ε.
The plus operator +, similar to the star operator, gives the set of all non-
empty strings on an alphabet Σ, i.e. the Kleene closure excluding the empty
string: Σ+ = Σ∗\{ε}.

Definition 5 (Concatenation)
The concatenation of two strings z = xy is the ordered list of symbols that
results from adding the symbols in y to x, keeping their order. It can be
arithmetically seen as a multiplication and an addition: z = x ∗ |Σ||y| + y.
As a shorthand notation, the i-times repeated concatenation of a string x
with itself is denoted as xi.
For convenience: x0 = ε, x1 = x.
The concatenation of two languages L12 = L1L2 is the set of all strings that
result from concatenating all strings from L1 with all strings from L2.
As a shorthand notation, similar to the cartesian product, the i-times re-
peated concatenation of a language L with itself is denoted as Li.
For convenience: L0 = {ε}, L1 = L, (∀i ≥ 1)∅i = ∅.

4

2.2 The Chomsky Hierarchy

Definition 6 (Formal grammar)
A formal grammar is a 4-tuple (N,Σ,P, s) consisting of an alphabet of non-
terminal symbols N, an alphabet of terminal symbols Σ s.t. N ∩ Σ = ∅, a
set of production rules P and a start symbol s ∈ N.

Definition 7 (Regular language)
A regular language is a language produced by a regular grammar.

5

2.3 Pumping lemma

Theorem 1 (Pumping lemma for regular languages)
L regular ⇒ ∃p ∈ N s.t. (∀z ∈ L, |z| ≥ p) ∃uvw = z s.t.

1. |uv| ≤ p

2. |v| ≥ 1)

3. (∀i ∈ N) uviw ∈ L

Theorem 2 (Pumping lemma for context-free languages)
L context-free⇒ ∃p ∈ N s.t. (∀z ∈ L, |z| ≥ p) ∃luvwr = z s.t.

1. |uvw| ≤ p

2. |uw| ≥ 1

3. (∀i ∈ N) luivwir ∈ L

6

3 Automata
Example automaton

q0start

q1

q2

q3

0

1

1

0

0

1

7

4 Computability
This section lists the definitions from the chapters on computability.

There are three very similar main sets that we look at throughout the
course: The set of positive integers including 0 (N), the set of all words
on some alphabet Σ including the empty word ε (Σ∗) as mentioned in the
first chapter and the set of all words of infinite length on some alphabet Σ
(Σω). For the reason of this diversity, many of the following definitions and
theorems are provided differently for the respective sets.

4.1 Numberings, notations, and representations

Definition 8 (Numbering)
A numbering is a surjective function ν :⊆ N→M .

Definition 9 ((ν1, ..., νk, ν)− computable for numberings)
A function f :⊆ M1 × · · · ×Mk → M is called (ν1, ..., νk, ν) − computable,
iff ∃ computable g : Nk → N s.t. f(ν1(i1), ..., νk(ik)) = ν ◦ g(i1, ..., ik).

Nk N

M1 × · · · ×Mk M

g

ν1, ..., νk

f

ν

8

Definition 10 (Notation)
A notation is a surjective function ν :⊆ Σ∗ →M .

Definition 11 ((ν1, ..., νk, ν)− computable for notations)
A function f :⊆ M1 × · · · ×Mk → M is called (ν1, ..., νk, ν) − computable,
iff ∃ computable g : Σ∗k → Σ∗ s.t. f(ν1(i1), ..., νk(ik)) = ν ◦ g(i1, ..., ik).

Σ∗k Σ∗

M1 × · · · ×Mk M

g

ν1, ..., νk

f

ν

Definition 12 (Representation)
A representation is a surjective function δ :⊆ Σω →M .

Definition 13 ((δ1, ..., δk, δ)− computable for representations)
A function f :⊆ M1 × · · · ×Mk → M is called (δ1, ..., δk, δ) − computable,
iff ∃ computable g : Σωk → Σω s.t. f(δ1(i1), ..., δk(ik)) = δ ◦ g(i1, ..., ik).

Σωk Σω

M1 × · · · ×Mk M

g

δ1, ..., δk

f

δ

9

4.2 Recursive and recursively enumerable

There are two functions which classify automata into the two categories of
deciders and recognizers (acceptors), which are defined as follows:

Definition 14 (characteristic function)

cfA(x) :=
{

1, if x ∈ A
0, otherwise

Definition 15

dfA(x) :=
{

1, if x ∈ A
div, otherwise

Note that the authors of the course use "div" for diverging in the sense of
non-terminating. Others may call the value "undefined".

A set A ⊆ Nk is called recursive (decidable), iff its characteristic func-
tion cfA is computable, i.e., there exists a decider for A.

Definition 16 A ⊆ Nk recursive
⇔ cfA : Nk → N computable

Theorem 3 A ⊆ Nk recursive
⇔ ∃ computable f ∈ R(k) s.t. A = f−1{0}
I.e., all elements of A are mapped to a fixed value (not necessarily 0) by a
recursive function f .

Definition 17 A ⊆ (Σ∗)k recursive
⇔ A = f−1{ε} for some total computable f : (Σ∗)k → Σ∗

10

A set A ⊆ Nk is called recursively enumerable (semi-decidable), in
short r.e., iff A is the domain of some computable function, i.e. there exists
an acceptor for A.

Definition 18 A ⊆ Nk recursively enumerable
⇔ ∃ computable f :⊆ Nk → N s.t. A = Dom(f)

Theorem 4 A ⊆ Nk r.e.
⇔ dfA : Nk → N computable

Theorem 5 A ⊆ Nk r.e.
⇔ π(k)[A] r.e.

Theorem 6 A ⊆ Nk recursive
⇔ A r.e. ∧ Nk\A r.e.

Theorem 7 (Projection Theorem) A ⊆ Nk r.e.
⇔ ∃ recursive B ⊆ Nk+1 s.t. A = {x ∈ Nk | (∃t) (x, t) ∈ B}

Definition 19 A ⊆ (Σ∗)k r.e.
⇔ A = Dom(f) for some computable f :⊆ (Σ∗)k → Σ∗

11

4.3 Hierarchies and separation

Theorem 8 (Time Hierarchy Theorem)
DTIME

(
o
(

f(n)
log f(n)

))
(DTIME(f(n))

Theorem 9 (Cook-Levin[1])
3SAT ∈ NP ∧ (∀ L ∈ NP) L ≤p 3SAT

12

A Wang tile

cwi cei

cni

csi

Coloured Wang tiles

Labeled Wang tiles

w e
n

s
e a

n

c
a b

c

d
Filling a grid with Wang tiles

13

References
[1] Stephen A. Cook, The complexity of theorem-proving procedures. Pro-

ceedings of the 3rd Annual ACM Symposuium on the Theory of Com-
puting (STOC’71). ACM, New York 1971, pp 151–158.

14

	Introduction
	Formal languages
	Basic terms
	The Chomsky Hierarchy
	Pumping lemma

	Automata
	Computability
	Numberings, notations, and representations
	Recursive and recursively enumerable
	Hierarchies and separation

